6 research outputs found

    Automatic Driver Drowsiness Detection System

    Get PDF
    The proposed system aims to lessen the number of accidents that occur due to drivers’ drowsiness and fatigue, which will in turn increase transportation safety. This has become a common reason for accidents in recent times. Several facial and body gestures are considered signs of drowsiness and fatigue in drivers, including tiredness in the eyes and yawning. These features are an indication that the driver’s condition is improper. EAR (Eye Aspect Ratio) computes the ratio of distances between the horizontal and vertical eye landmarks, which is required for the detection of drowsiness. For the purpose of yawn detection, a YAWN value is calculated using the distance between the lower lip and the upper lip, and the distance will be compared against a threshold value. We have deployed an eSpeak module (text-to-speech synthesiser), which is used for giving appropriate voice alerts when the driver is feeling drowsy or is yawning. The proposed system is designed to decrease the rate of accidents and contribute to technology with the goal of preventing fatalities caused by road accidents. Over the past ten years, advances in artificial intelligence and computing technologies have improved driver monitoring systems. Several experimental studies have gathered data on actual driver fatigue using different artificial intelligence systems. In order to dramatically improve these systems' real-time performance, feature combinations are used. An updated evaluation of the driver sleepiness detection technologies put in place during the previous ten years is presented in this research. The paper discusses and displays current systems that track and identify drowsiness using various metrics. Based on the information used, each system can be categorised into one of four groups. Each system in this paper comes with a thorough discussion of the features, classification rules, and datasets it employs.&nbsp

    High Performance Interconnection Technology in Avionics (Short Communication)

    No full text
    Avionics subsystems continue to get smaller and more functional, driving the total circuit package itself to become denser, causing the printed wiring board (PWB) to evolve new laminates to meet these needs. There is a continuous scope for improvement to match the requirement of wireability demand from high density and high speed integrated circuits. Development of control processing units and rapid expansion of memory device capabilities were realised by the development of large-scale integrated circuits and other electronic devices with higher integration and with new functionalities. Enormous efforts have been put on the development of the system-on-chip (SOC), where a single semiconductor chip constituting complete system is bonded on substrate. These innovations in packaging technology made a big impact on laminates used in printed circuit boards. Aircraft systems are expected to withstand disturbances due to unexpected threats. Under such situations, passengers' safety, emergency landing and timely information to pilot become of paramount importance, hence, new innovative laminate systems are being developed. Various aspects of laminates and the current developments that are taking place are facilitating scientists and engineers in selecting appropriate laminate systems, have been discussed.Defence Science Journal, 2011, 61(4), pp.354-363, DOI:http://dx.doi.org/10.14429/dsj.61.108
    corecore